forked from 77media/video-flow
276 lines
7.8 KiB
TypeScript
276 lines
7.8 KiB
TypeScript
import { VideoFlowProjectResponse } from "@/api/allMovieType";
|
||
import { task_item, VideoSegmentEntityAdapter } from "../adapter/oldErrAdapter";
|
||
import { VideoSegmentEntity } from "../domain/Entities";
|
||
import { LensType } from "../domain/valueObject";
|
||
import {
|
||
getShotList,
|
||
regenerateShot,
|
||
optimizeShotContent,
|
||
updateShotPrompt,
|
||
detailScriptEpisodeNew,
|
||
faceRecognition,
|
||
} from "@/api/video_flow";
|
||
|
||
/**
|
||
* 视频片段编辑用例
|
||
* 负责视频片段内容的初始化、修改和优化
|
||
*/
|
||
export class VideoSegmentEditUseCase {
|
||
private loading: boolean = false;
|
||
|
||
/**
|
||
* @description 获取视频片段列表
|
||
* @param projectId 项目ID
|
||
* @returns Promise<VideoSegmentEntity[]> 视频片段列表
|
||
*/
|
||
async getVideoSegmentList(projectId: string): Promise<VideoSegmentEntity[]> {
|
||
try {
|
||
this.loading = true;
|
||
|
||
const response = await getShotList({ project_id: projectId });
|
||
|
||
if (!response.successful) {
|
||
throw new Error(response.message || "获取视频片段列表失败");
|
||
}
|
||
|
||
const Segments = VideoSegmentEntityAdapter.toVideoSegmentEntity(response.data) || [];
|
||
const detail = await detailScriptEpisodeNew({ project_id: projectId });
|
||
if (!detail.successful || !detail.data) {
|
||
throw new Error(detail.message || "获取视频片段列表失败");
|
||
}
|
||
// 匹配视频片段ID
|
||
return this.matchVideoSegmentsWithIds(Segments, detail.data);
|
||
} catch (error) {
|
||
console.error("获取视频片段列表失败:", error);
|
||
throw error;
|
||
} finally {
|
||
this.loading = false;
|
||
}
|
||
}
|
||
|
||
/**
|
||
* @description 为视频片段匹配对应的video_id
|
||
* @param segments 视频片段列表
|
||
* @param detail 项目详情数据
|
||
* @returns VideoSegmentEntity[] 匹配后的视频片段列表
|
||
* @throws Error 当有视频片段未匹配到video_id时
|
||
*/
|
||
private matchVideoSegmentsWithIds(
|
||
segments: VideoSegmentEntity[],
|
||
detail: VideoFlowProjectResponse
|
||
): VideoSegmentEntity[] {
|
||
|
||
|
||
const projectData = detail.data as any;
|
||
const videoData = projectData?.data?.video?.data;
|
||
|
||
if (!videoData || !Array.isArray(videoData)) {
|
||
return segments;
|
||
}
|
||
|
||
// 建立URL到VideoItem的映射表,提高查找效率
|
||
const urlToVideoMap = new Map<string, any>();
|
||
videoData.forEach(videoItem => {
|
||
if (videoItem.urls && Array.isArray(videoItem.urls)) {
|
||
videoItem.urls.forEach((url: string) => {
|
||
urlToVideoMap.set(url, videoItem);
|
||
});
|
||
}
|
||
});
|
||
|
||
// 为每个视频片段匹配video_id并重新创建实体
|
||
const updatedSegments: VideoSegmentEntity[] = [];
|
||
|
||
segments.forEach(segment => {
|
||
if (segment.videoUrl && Array.isArray(segment.videoUrl)) {
|
||
// 查找匹配的视频项
|
||
const matchedVideo = segment.videoUrl.find(url => urlToVideoMap.has(url));
|
||
const videoItem = matchedVideo ? urlToVideoMap.get(matchedVideo) : null;
|
||
|
||
if (videoItem) {
|
||
// 创建新的实体实例,设置正确的id
|
||
const updatedSegment: VideoSegmentEntity = {
|
||
...segment,
|
||
id: videoItem.video_id
|
||
};
|
||
updatedSegments.push(updatedSegment);
|
||
} else {
|
||
// 如果没有匹配到,保持原样
|
||
updatedSegments.push(segment);
|
||
}
|
||
} else {
|
||
updatedSegments.push(segment);
|
||
}
|
||
});
|
||
|
||
// 检查是否所有视频片段都匹配上了id
|
||
const unmatchedSegments = updatedSegments.filter(segment =>
|
||
segment.id.startsWith('video_mock_') || !segment.id
|
||
);
|
||
|
||
if (unmatchedSegments.length > 0) {
|
||
console.warn('以下视频片段未匹配到video_id:', unmatchedSegments.map(s => ({ name: s.name, videoUrl: s.videoUrl })));
|
||
throw new Error(`有 ${unmatchedSegments.length} 个视频片段未匹配到对应的video_id`);
|
||
}
|
||
|
||
return updatedSegments;
|
||
}
|
||
|
||
/**
|
||
* @description 保存分镜提示词数据
|
||
* @param project_id 项目ID
|
||
* @param shot_id 分镜ID
|
||
* @param shot_descriptions 镜头描述数据
|
||
* @returns Promise<any> 保存结果
|
||
*/
|
||
async saveShotPrompt(
|
||
project_id: string,
|
||
shot_id: string,
|
||
shot_descriptions: task_item
|
||
): Promise<any> {
|
||
try {
|
||
this.loading = true;
|
||
|
||
const response = await updateShotPrompt({
|
||
project_id,
|
||
shot_id,
|
||
shot_descriptions,
|
||
});
|
||
|
||
if (!response.successful) {
|
||
throw new Error(response.message || "保存分镜提示词数据失败");
|
||
}
|
||
|
||
return response.data;
|
||
} catch (error) {
|
||
console.error("保存分镜提示词数据失败:", error);
|
||
throw error;
|
||
} finally {
|
||
this.loading = false;
|
||
}
|
||
}
|
||
|
||
/**
|
||
* @description 通过视频镜头描述数据重新生成视频
|
||
* @param project_id 项目ID
|
||
* @param shot_Lens 镜头描述数据
|
||
* @param shot_id 视频片段ID(可选,如果重新生成现有片段)
|
||
* @returns Promise<VideoSegmentEntity> 重新生成的视频片段
|
||
*/
|
||
async regenerateVideoSegment(
|
||
project_id: string,
|
||
shot_Lens: LensType[],
|
||
shot_id?: string,
|
||
// roleReplaceParams?: { oldId: string; newId: string }[],
|
||
// sceneReplaceParams?: { oldId: string; newId: string }[]
|
||
): Promise<VideoSegmentEntity> {
|
||
try {
|
||
this.loading = true;
|
||
const shot_descriptions = VideoSegmentEntityAdapter.lensTypeToTaskItem(shot_Lens);
|
||
// 如果有shot_id,先保存分镜数据
|
||
if (shot_id) {
|
||
await this.saveShotPrompt(project_id, shot_id, shot_descriptions);
|
||
}
|
||
|
||
const response = await regenerateShot({
|
||
project_id,
|
||
shot_id,
|
||
shot_descriptions,
|
||
// roleReplaceParams,
|
||
// sceneReplaceParams,
|
||
});
|
||
|
||
if (!response.successful) {
|
||
throw new Error(response.message || "重新生成视频片段失败");
|
||
}
|
||
|
||
return response.data;
|
||
} catch (error) {
|
||
console.error("重新生成视频片段失败:", error);
|
||
throw error;
|
||
} finally {
|
||
this.loading = false;
|
||
}
|
||
}
|
||
|
||
/**
|
||
* @description 通过AI优化镜头数据(包含对话内容)
|
||
* @param shotId 视频片段ID
|
||
* @param userRequirement 用户优化需求
|
||
* @param lensData 镜头数据数组
|
||
* @returns Promise<LensType[]> 优化后的镜头数据
|
||
*/
|
||
async optimizeVideoContent(
|
||
shotId: string,
|
||
userRequirement: string,
|
||
lensData: LensType[]
|
||
): Promise<LensType[]> {
|
||
try {
|
||
this.loading = true;
|
||
|
||
// 调用AI优化接口
|
||
const response = await optimizeShotContent({
|
||
shotId,
|
||
userRequirement,
|
||
lensData,
|
||
});
|
||
|
||
if (!response.successful) {
|
||
throw new Error(response.message || "AI优化视频内容失败");
|
||
}
|
||
|
||
return response.data;
|
||
} catch (error) {
|
||
console.error("AI优化视频内容失败:", error);
|
||
throw error;
|
||
} finally {
|
||
this.loading = false;
|
||
}
|
||
}
|
||
|
||
/**
|
||
* @description 获取加载状态
|
||
* @returns boolean 是否正在加载
|
||
*/
|
||
isLoading(): boolean {
|
||
return this.loading;
|
||
}
|
||
|
||
/**
|
||
* @description 识别视频帧中的角色
|
||
* @param projectId 项目ID
|
||
* @param videoId 视频ID
|
||
* @param targetImageUrl 目标图片URL
|
||
* @returns Promise<any> 识别结果
|
||
*/
|
||
async recognizeRoleFromImage(
|
||
projectId: string,
|
||
videoId: string,
|
||
targetImageUrl: string
|
||
): Promise<any> {
|
||
try {
|
||
this.loading = true;
|
||
|
||
const response = await faceRecognition({
|
||
project_id: projectId,
|
||
video_id: videoId,
|
||
target_image_url: targetImageUrl,
|
||
});
|
||
|
||
if (!response.successful) {
|
||
throw new Error(response.message || "人脸识别失败");
|
||
}
|
||
|
||
// 打印返回结果
|
||
console.log('人脸识别接口返回结果:', response);
|
||
|
||
return response.data;
|
||
} catch (error) {
|
||
console.error("人脸识别失败:", error);
|
||
throw error;
|
||
} finally {
|
||
this.loading = false;
|
||
}
|
||
}
|
||
}
|