Compare commits
No commits in common. "c796ada84fe93286fbd6d26f300d4d32a2952875" and "70d247fa4c1c5e82f0e899e78e2f8e3e6fa6f79a" have entirely different histories.
c796ada84f
...
70d247fa4c
1
.gitignore
vendored
1
.gitignore
vendored
@ -52,4 +52,3 @@ Thumbs.db
|
||||
# Temporary files
|
||||
*.tmp
|
||||
*.temp
|
||||
.qiniu_pythonsdk_hostscache.json
|
||||
47
Dockerfile
47
Dockerfile
@ -1,47 +0,0 @@
|
||||
# 使用Python 3.11官方镜像作为基础镜像
|
||||
FROM python:3.11-slim
|
||||
|
||||
# 设置工作目录
|
||||
WORKDIR /app
|
||||
|
||||
# 设置环境变量
|
||||
ENV PYTHONDONTWRITEBYTECODE=1 \
|
||||
PYTHONUNBUFFERED=1 \
|
||||
PYTHONPATH=/app/src
|
||||
|
||||
# 安装系统依赖,包括ffmpeg
|
||||
RUN apt-get update && apt-get install -y \
|
||||
build-essential \
|
||||
libpq-dev \
|
||||
curl \
|
||||
ffmpeg \
|
||||
&& rm -rf /var/lib/apt/lists/*
|
||||
|
||||
# 验证ffmpeg安装
|
||||
RUN ffmpeg -version
|
||||
|
||||
# 复制requirements文件并安装Python依赖
|
||||
COPY requirements.txt .
|
||||
RUN pip install --no-cache-dir --upgrade pip && \
|
||||
pip install --no-cache-dir -r requirements.txt
|
||||
|
||||
# 复制项目文件
|
||||
COPY . .
|
||||
|
||||
# 创建日志目录
|
||||
RUN mkdir -p /app/logs
|
||||
|
||||
# 创建非root用户
|
||||
RUN useradd --create-home --shell /bin/bash app && \
|
||||
chown -R app:app /app
|
||||
USER app
|
||||
|
||||
# 暴露端口
|
||||
EXPOSE 8000
|
||||
|
||||
# 健康检查
|
||||
HEALTHCHECK --interval=30s --timeout=30s --start-period=5s --retries=3 \
|
||||
CMD curl -f http://localhost:8000/docs || exit 1
|
||||
|
||||
# 启动命令 - 使用多worker提升并发性能
|
||||
CMD ["uvicorn", "main:app", "--host", "0.0.0.0", "--port", "8000", "--app-dir", "src", "--workers", "4", "--loop", "uvloop"]
|
||||
@ -8,8 +8,6 @@ QINIU_BUCKET_NAME="your_qiniu_bucket_name"
|
||||
QINIU_DOMAIN="your_qiniu_cdn_domain"
|
||||
|
||||
# AI Models
|
||||
# Google API Keys,支持单个或多个key(用逗号分隔),用于处理限流重试
|
||||
GOOGLE_API_KEYS="your_google_ai_api_key"
|
||||
# 多个key示例: GOOGLE_API_KEYS="key1,key2,key3"
|
||||
GOOGLE_API_KEY="your_google_ai_api_key"
|
||||
OPENROUTER_API_KEY="your_openrouter_api_key"
|
||||
OPENROUTER_BASE_URL="https://openrouter.ai/api/v1"
|
||||
|
||||
@ -90,8 +90,8 @@ class AIServiceImpl(AIService):
|
||||
async def generate_video(self, frame_image_bytes: bytes, shot_prompt: str):
|
||||
return await self.gemini_client.generate_video(frame_image_bytes, shot_prompt)
|
||||
|
||||
async def analyze_video(self, video_url: str, prompt_template: str):
|
||||
return await self.gemini_client.analyze_video(video_url, prompt_template)
|
||||
async def analyze_video(self, video_url: str):
|
||||
return await self.gemini_client.analyze_video(video_url)
|
||||
|
||||
|
||||
class StorageServiceImpl(StorageService):
|
||||
|
||||
@ -434,14 +434,8 @@ async def replicate_from_video(
|
||||
):
|
||||
"""一键复刻:从视频URL生成项目、素材和分镜"""
|
||||
try:
|
||||
# 视频分析提示词模板不需要特定的占位符变量,因为视频内容直接传给AI模型
|
||||
# 这里可以添加其他模板格式验证逻辑,如果需要的话
|
||||
|
||||
# 调用业务逻辑
|
||||
result = await project_use_cases.replicate_from_video(
|
||||
request.video_url,
|
||||
request.prompt_template
|
||||
)
|
||||
result = await project_use_cases.replicate_from_video(request.video_url)
|
||||
|
||||
project = result["project"]
|
||||
assets = result["assets"]
|
||||
|
||||
@ -157,7 +157,6 @@ class ComposeVideoResponse(BaseModel):
|
||||
class VideoReplicateRequest(BaseModel):
|
||||
"""一键复刻请求模式"""
|
||||
video_url: str = Field(..., description="要复刻的视频URL")
|
||||
prompt_template: str = Field(..., description="视频分析提示词模板")
|
||||
|
||||
|
||||
# 更新引用
|
||||
|
||||
@ -590,13 +590,12 @@ class ProjectUseCases:
|
||||
logger.error(f"生成视频失败: {e}")
|
||||
raise ValueError(f"生成视频失败: {e}")
|
||||
|
||||
async def replicate_from_video(self, video_url: str, prompt_template: str) -> Dict[str, Any]:
|
||||
async def replicate_from_video(self, video_url: str) -> Dict[str, Any]:
|
||||
"""
|
||||
一键复刻:从视频URL生成项目、素材和分镜
|
||||
|
||||
Args:
|
||||
video_url: 要复刻的视频URL
|
||||
prompt_template: 视频分析提示词模板
|
||||
|
||||
Returns:
|
||||
包含project、assets、storyboards的字典
|
||||
@ -606,7 +605,7 @@ class ProjectUseCases:
|
||||
|
||||
# 1. 使用Gemini分析视频内容
|
||||
logger.info("正在分析视频内容...")
|
||||
analysis_result = await self.ai_service.analyze_video(video_url, prompt_template)
|
||||
analysis_result = await self.ai_service.analyze_video(video_url)
|
||||
if not analysis_result:
|
||||
raise ValueError("视频分析失败")
|
||||
|
||||
|
||||
@ -110,13 +110,12 @@ class AIService(ABC):
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
async def analyze_video(self, video_url: str, prompt_template: str) -> Optional[Dict[str, Any]]:
|
||||
async def analyze_video(self, video_url: str) -> Optional[Dict[str, Any]]:
|
||||
"""
|
||||
分析视频内容,提取关键素材帧和分镜关键帧
|
||||
|
||||
Args:
|
||||
video_url: 视频URL
|
||||
prompt_template: 视频分析提示词模板
|
||||
|
||||
Returns:
|
||||
分析结果字典,包含key_assets_frames和key_storyboard_frames
|
||||
|
||||
@ -18,7 +18,7 @@ class Settings(BaseSettings):
|
||||
qiniu_domain: str
|
||||
|
||||
# AI Models
|
||||
google_api_keys: str
|
||||
google_api_key: str
|
||||
openrouter_api_key: str
|
||||
openrouter_base_url: str = "https://openrouter.ai/api/v1"
|
||||
|
||||
|
||||
199
src/infrastructure/external/gemini_client.py
vendored
199
src/infrastructure/external/gemini_client.py
vendored
@ -10,78 +10,17 @@ from google import genai
|
||||
from google.genai import types
|
||||
from ..config import settings
|
||||
from ..utils import safe_json_loads
|
||||
from .key_pool_manager import key_pool_manager
|
||||
from ..services.template_service import TemplateService
|
||||
from loguru import logger
|
||||
import ssl
|
||||
import urllib3
|
||||
urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning)
|
||||
|
||||
|
||||
client = genai.Client(api_key=settings.google_api_key)
|
||||
|
||||
class GeminiClient:
|
||||
"""Gemini AI客户端"""
|
||||
|
||||
def __init__(self):
|
||||
self._current_client = None
|
||||
self._refresh_client()
|
||||
|
||||
def _refresh_client(self):
|
||||
"""刷新客户端,使用当前key"""
|
||||
current_key = key_pool_manager.get_current_key()
|
||||
self._current_client = genai.Client(api_key=current_key)
|
||||
|
||||
def _execute_with_retry(self, func, *args, **kwargs):
|
||||
"""
|
||||
执行函数并处理429错误重试
|
||||
|
||||
Args:
|
||||
func: 要执行的函数
|
||||
*args: 函数参数
|
||||
**kwargs: 函数关键字参数
|
||||
|
||||
Returns:
|
||||
函数执行结果
|
||||
|
||||
Raises:
|
||||
Exception: 所有key都尝试过后仍然失败
|
||||
"""
|
||||
key_pool_manager.reset_to_first_key() # 每次请求都从第一个key开始
|
||||
self._refresh_client()
|
||||
|
||||
last_exception = None
|
||||
tried_keys = 0
|
||||
max_keys = len(key_pool_manager.get_all_keys())
|
||||
|
||||
while tried_keys < max_keys:
|
||||
try:
|
||||
tried_keys += 1
|
||||
logger.info(f"使用第{tried_keys}个key尝试请求")
|
||||
return func(*args, **kwargs)
|
||||
|
||||
except Exception as e:
|
||||
last_exception = e
|
||||
error_str = str(e).lower()
|
||||
|
||||
# 检查是否是429错误
|
||||
if '429' in error_str or 'rate limit' in error_str or 'quota' in error_str:
|
||||
logger.warning(f"遇到限流错误: {e}")
|
||||
|
||||
# 如果还有更多key可以尝试
|
||||
if key_pool_manager.switch_to_next_key():
|
||||
self._refresh_client()
|
||||
logger.info("切换到下一个key继续尝试")
|
||||
continue
|
||||
else:
|
||||
logger.error("所有key都已尝试,仍然遇到限流")
|
||||
break
|
||||
else:
|
||||
# 非429错误,直接抛出,不重试
|
||||
logger.error(f"遇到非限流错误,不重试: {e}")
|
||||
raise e
|
||||
|
||||
# 所有key都尝试过了,抛出最后一个异常
|
||||
logger.error(f"所有{max_keys}个key都已尝试,请求失败")
|
||||
raise last_exception
|
||||
|
||||
def generate_image_from_prompt(
|
||||
self,
|
||||
prompt: str,
|
||||
@ -97,7 +36,7 @@ class GeminiClient:
|
||||
Returns:
|
||||
生成的图片二进制数据,失败返回None
|
||||
"""
|
||||
def _generate_image():
|
||||
try:
|
||||
# 构建图片生成提示词
|
||||
image_prompt = f'''
|
||||
Generate an image strictly according to the following prompt without any confirmation, questioning, or omission:
|
||||
@ -117,17 +56,13 @@ class GeminiClient:
|
||||
contents.append(image_prompt)
|
||||
# 调用Gemini API生成图片
|
||||
|
||||
response = self._current_client.models.generate_content(
|
||||
response = client.models.generate_content(
|
||||
model='gemini-2.5-flash-image-preview',
|
||||
contents=contents,
|
||||
config=types.GenerateContentConfig(
|
||||
http_options=types.HttpOptions(timeout=30000)
|
||||
)
|
||||
)
|
||||
return response
|
||||
|
||||
try:
|
||||
response = self._execute_with_retry(_generate_image)
|
||||
text = None
|
||||
image_base64 = None
|
||||
if hasattr(response, 'candidates') and response.candidates:
|
||||
@ -157,7 +92,7 @@ class GeminiClient:
|
||||
Returns:
|
||||
分析结果字典,包含name、description、tags
|
||||
"""
|
||||
def _analyze_image():
|
||||
try:
|
||||
prompt = """
|
||||
请分析这张图片,并返回以下JSON格式的结果:
|
||||
{
|
||||
@ -169,7 +104,7 @@ class GeminiClient:
|
||||
请确保返回的是有效的JSON格式,不要包含其他文字。
|
||||
"""
|
||||
|
||||
response = self._current_client.models.generate_content(
|
||||
response = client.models.generate_content(
|
||||
model='gemini-2.5-flash',
|
||||
contents=[
|
||||
prompt,
|
||||
@ -179,10 +114,6 @@ class GeminiClient:
|
||||
)
|
||||
]
|
||||
)
|
||||
return response
|
||||
|
||||
try:
|
||||
response = self._execute_with_retry(_analyze_image)
|
||||
|
||||
# 解析返回的JSON
|
||||
result_text = response.text
|
||||
@ -210,28 +141,25 @@ class GeminiClient:
|
||||
Returns:
|
||||
生成的视频二进制数据,失败返回None
|
||||
"""
|
||||
def _generate_video():
|
||||
try:
|
||||
# 构建视频生成提示词
|
||||
video_prompt = f"Create a video with the following prompt: {shot_prompt}"
|
||||
|
||||
|
||||
image_input = types.Image(image_bytes=frame_image_bytes, mime_type="image/jpeg")
|
||||
|
||||
# 调用Veo-3.0 API生成视频
|
||||
operation = self._current_client.models.generate_videos(
|
||||
model="veo-3.0-generate-preview", #veo-3.0-fast-generate-preview
|
||||
operation = client.models.generate_videos(
|
||||
model="veo-3.0-fast-generate-preview", #veo-3.0-generate-preview
|
||||
prompt=video_prompt,
|
||||
image=image_input
|
||||
)
|
||||
return operation
|
||||
|
||||
try:
|
||||
operation = self._execute_with_retry(_generate_video)
|
||||
|
||||
# 轮询操作状态直到视频生成完成
|
||||
logger.info("等待视频生成完成...")
|
||||
while not operation.done:
|
||||
time.sleep(2)
|
||||
operation = self._current_client.operations.get(operation)
|
||||
operation = client.operations.get(operation)
|
||||
|
||||
# 下载生成的视频
|
||||
|
||||
@ -244,7 +172,7 @@ class GeminiClient:
|
||||
raise Exception(operation.response.rai_media_filtered_reasons[0])
|
||||
raise Exception("未知错误")
|
||||
|
||||
video_bytes = self._current_client.files.download(file=video.video)
|
||||
video_bytes = client.files.download(file=video.video)
|
||||
|
||||
logger.info("Veo-3.0视频生成成功")
|
||||
return video_bytes
|
||||
@ -253,13 +181,12 @@ class GeminiClient:
|
||||
logger.error(f"Veo-3.0视频生成失败: {e}")
|
||||
raise e
|
||||
|
||||
async def analyze_video(self, video_url: str, prompt_template: str) -> Optional[Dict[str, Any]]:
|
||||
async def analyze_video(self, video_url: str) -> Optional[Dict[str, Any]]:
|
||||
"""
|
||||
分析视频内容,提取关键素材帧和分镜关键帧
|
||||
|
||||
Args:
|
||||
video_url: 视频URL
|
||||
prompt_template: 视频分析提示词模板
|
||||
|
||||
Returns:
|
||||
分析结果字典,包含key_assets_frames和key_storyboard_frames
|
||||
@ -280,54 +207,74 @@ class GeminiClient:
|
||||
temp_video_path = temp_file.name
|
||||
|
||||
try:
|
||||
def _upload_and_analyze():
|
||||
# 上传视频文件到Gemini
|
||||
logger.info("正在上传视频到Gemini...")
|
||||
myfile = self._current_client.files.upload(file=temp_video_path)
|
||||
logger.info(f"视频上传成功,文件ID: {myfile.name}")
|
||||
# 上传视频文件到Gemini
|
||||
logger.info("正在上传视频到Gemini...")
|
||||
myfile = client.files.upload(file=temp_video_path)
|
||||
logger.info(f"视频上传成功,文件ID: {myfile.name}")
|
||||
|
||||
# 等待文件变为ACTIVE状态
|
||||
logger.info("等待文件处理完成...")
|
||||
max_wait_time = 300 # 最多等待5分钟
|
||||
wait_interval = 5 # 每5秒检查一次
|
||||
waited_time = 0
|
||||
# 等待文件变为ACTIVE状态
|
||||
logger.info("等待文件处理完成...")
|
||||
max_wait_time = 300 # 最多等待5分钟
|
||||
wait_interval = 5 # 每5秒检查一次
|
||||
waited_time = 0
|
||||
|
||||
while waited_time < max_wait_time:
|
||||
file_info = self._current_client.files.get(name=myfile.name)
|
||||
logger.info(f"文件状态: {file_info.state}")
|
||||
while waited_time < max_wait_time:
|
||||
file_info = client.files.get(name=myfile.name)
|
||||
logger.info(f"文件状态: {file_info.state}")
|
||||
|
||||
if file_info.state == "ACTIVE":
|
||||
logger.info("文件已准备就绪,开始分析")
|
||||
break
|
||||
elif file_info.state == "FAILED":
|
||||
raise Exception("文件处理失败")
|
||||
if file_info.state == "ACTIVE":
|
||||
logger.info("文件已准备就绪,开始分析")
|
||||
break
|
||||
elif file_info.state == "FAILED":
|
||||
raise Exception("文件处理失败")
|
||||
|
||||
time.sleep(wait_interval)
|
||||
waited_time += wait_interval
|
||||
time.sleep(wait_interval)
|
||||
waited_time += wait_interval
|
||||
|
||||
if waited_time >= max_wait_time:
|
||||
raise Exception("文件处理超时")
|
||||
if waited_time >= max_wait_time:
|
||||
raise Exception("文件处理超时")
|
||||
|
||||
return myfile
|
||||
# 构建分析提示词
|
||||
analysis_prompt = """
|
||||
请仔细分析这个视频,并返回以下JSON格式的结果:
|
||||
{
|
||||
"title": "为这个视频生成一个简洁有吸引力的标题,不超过20个字符",
|
||||
"script": "根据视频内容生成的完整剧本,包含对话、动作、场景描述等",
|
||||
"key_assets_frames": [
|
||||
{
|
||||
"timestamp": "HH:MM:SS",
|
||||
"name": "素材名称",
|
||||
"description": "素材描述",
|
||||
"tags": ["标签1", "标签2"]
|
||||
}
|
||||
],
|
||||
"key_storyboard_frames": [
|
||||
{
|
||||
"timestamp": "HH:MM:SS",
|
||||
"frame_prompt": "该帧画面描述",
|
||||
"shot_prompt": "该关键帧到下一关键帧之间的剧情描述"
|
||||
}
|
||||
]
|
||||
}
|
||||
|
||||
# 直接使用提示词模板作为分析提示词
|
||||
analysis_prompt = prompt_template
|
||||
要求:
|
||||
1. title: 根据视频主题和内容生成简洁有吸引力的标题,要能概括视频核心内容,不超过20个字符
|
||||
2. script: 根据视频内容生成完整的剧本,包含场景描述、角色对话、动作指导等,要生动详细
|
||||
3. key_assets_frames: 提取3-5个关键素材帧,包含视觉元素如角色、场景、道具、动物等
|
||||
4. key_storyboard_frames: 提取分镜关键帧,约每8秒一帧
|
||||
5. timestamp格式必须是HH:MM:SS
|
||||
6. 确保返回的是有效的JSON格式,不要包含其他文字
|
||||
"""
|
||||
|
||||
myfile = self._execute_with_retry(_upload_and_analyze)
|
||||
|
||||
def _analyze_video_content():
|
||||
# 调用Gemini分析视频
|
||||
logger.info("正在分析视频内容...")
|
||||
response = self._current_client.models.generate_content(
|
||||
model="gemini-2.5-flash",
|
||||
contents=[myfile, analysis_prompt],
|
||||
config=types.GenerateContentConfig(
|
||||
http_options=types.HttpOptions(timeout=120000) # 2分钟超时
|
||||
)
|
||||
# 调用Gemini分析视频
|
||||
logger.info("正在分析视频内容...")
|
||||
response = client.models.generate_content(
|
||||
model="gemini-2.5-flash",
|
||||
contents=[myfile, analysis_prompt],
|
||||
config=types.GenerateContentConfig(
|
||||
http_options=types.HttpOptions(timeout=120000) # 2分钟超时
|
||||
)
|
||||
return response
|
||||
|
||||
response = self._execute_with_retry(_analyze_video_content)
|
||||
)
|
||||
|
||||
# 解析返回的JSON
|
||||
result_text = response.text
|
||||
|
||||
61
src/infrastructure/external/key_pool_manager.py
vendored
61
src/infrastructure/external/key_pool_manager.py
vendored
@ -1,61 +0,0 @@
|
||||
from typing import List, Optional, Iterator
|
||||
from loguru import logger
|
||||
import threading
|
||||
from ..config import settings
|
||||
|
||||
|
||||
class KeyPoolManager:
|
||||
"""Google API Key池管理器,用于处理限流重试"""
|
||||
|
||||
def __init__(self):
|
||||
self._keys: List[str] = []
|
||||
self._current_index = 0
|
||||
self._lock = threading.Lock()
|
||||
self._initialize_keys()
|
||||
|
||||
def _initialize_keys(self):
|
||||
"""初始化key池"""
|
||||
# 解析key字符串,支持单个或多个key
|
||||
self._keys = [key.strip() for key in settings.google_api_keys.split(',') if key.strip()]
|
||||
if not self._keys:
|
||||
raise ValueError("GOOGLE_API_KEYS不能为空")
|
||||
logger.info(f"初始化Google API Key池,共{len(self._keys)}个key")
|
||||
|
||||
def get_current_key(self) -> str:
|
||||
"""获取当前key"""
|
||||
with self._lock:
|
||||
if not self._keys:
|
||||
raise ValueError("没有可用的Google API Key")
|
||||
return self._keys[self._current_index]
|
||||
|
||||
def switch_to_next_key(self) -> bool:
|
||||
"""切换到下一个key
|
||||
|
||||
Returns:
|
||||
bool: 如果还有下一个key返回True,否则返回False
|
||||
"""
|
||||
with self._lock:
|
||||
if len(self._keys) <= 1:
|
||||
return False
|
||||
|
||||
self._current_index = (self._current_index + 1) % len(self._keys)
|
||||
logger.info(f"切换到下一个Google API Key,当前索引: {self._current_index}")
|
||||
return True
|
||||
|
||||
def reset_to_first_key(self):
|
||||
"""重置到第一个key"""
|
||||
with self._lock:
|
||||
self._current_index = 0
|
||||
logger.info("重置到第一个Google API Key")
|
||||
|
||||
def get_all_keys(self) -> List[str]:
|
||||
"""获取所有key(用于测试)"""
|
||||
return self._keys.copy()
|
||||
|
||||
def has_multiple_keys(self) -> bool:
|
||||
"""是否有多个key"""
|
||||
return len(self._keys) > 1
|
||||
|
||||
|
||||
# 全局key池管理器实例
|
||||
key_pool_manager = KeyPoolManager()
|
||||
@ -21,7 +21,7 @@ class OpenRouterClient:
|
||||
async def generate_text(
|
||||
self,
|
||||
prompt: str,
|
||||
model: str = "google/gemini-2.5-pro"
|
||||
model: str = "anthropic/claude-3.5-sonnet"
|
||||
) -> Optional[str]:
|
||||
"""
|
||||
生成文本内容
|
||||
@ -66,7 +66,7 @@ class OpenRouterClient:
|
||||
self,
|
||||
prompt_template: str,
|
||||
script_or_idea: str,
|
||||
model: str = "google/gemini-2.5-pro"
|
||||
model: str = "anthropic/claude-3.5-sonnet"
|
||||
) -> Optional[Dict[str, Any]]:
|
||||
"""
|
||||
生成完整剧本和素材信息
|
||||
@ -107,7 +107,7 @@ class OpenRouterClient:
|
||||
text: str,
|
||||
source_lang: str = "zh",
|
||||
target_lang: str = "en",
|
||||
model: str = "google/gemini-2.5-pro"
|
||||
model: str = "anthropic/claude-3.5-sonnet"
|
||||
) -> Optional[str]:
|
||||
"""
|
||||
翻译文本
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user